
STA 235H - Bootcamp

Fall 2023

McCombs School of Business, UT Austin

What do we need?

Quick look into R and RStudio
RScript format

Refresher from the tidyverse:

Data wrangling
Plots and figures
Regressions

Bootcamp Agenda

How comfortable are you with R?

R is the programming language we will use for
statistical analysis

RStudio is the IDE (Integrated Development
Environment) we will use to run R on our
computers.

R for coding

Let's look at RStudio

Let's look at RStudio - Script

Let's look at RStudio - Environment

Let's look at RStudio - Console

Let's look at RStudio - Help and others

Useful basic commands

install.packages("name"): Installs the package "name" on your computer. You only need to run
this once!

library(name): Loads the package "name" on your current session. You should do this at the top of
every script and only include packages you will use (to avoid confusion)

?function: Opens the help file for function (if there is more than one function -- e.g. different
libraries -- you can choose which one you open).

Also... don't restore RData into a new session!

Let's go to R

Most times we need to transform, clean, and
structure data for analysis.

Examples of data wrangling would be dropping
missing observations, merging different
datasets, identifying outliers, etc.

R can help us do that!

Data Wrangling

For data wrangling, we will use the tidyverse:
Collection of packages that follow a similar
design structure (e.g. dplyr, ggplot2)

It works through pipes: %>%

Concatenates functions!

Into the tidyverse

Useful functions for wrangling

mutate(var = var1 + var2): Creates a new variable or replaces an existing one. It takes as an
argument the name of the variable and what you want that variable to be.

filter(var == 1): Subsets your data according to a logic statement. Remember that logic statements
use "==" instead of "="!

group_by(var1, var2): Used to group observations by values of different variables. You can use it
either to create a variable with values at the group level, or to summarize your dataset by group.

select(var1, var2): Select specific variables from the dataset (drop the others). In case you want to
drop instead of keeping variables, you can use select(-var1, -var2)

rename(var_new = var_old): The name says it all. Used to rename variables.

Other useful functions

is.na(var): logic function that returns TRUE if the observation is a missing value (NA) or FALSE in
another case.

ifelse(logic_statement, val1, val2): Very useful function to create conditional values.

!(logic_statement): The exclamation point acts as a negation. If you want to invert a logic statement,
use this (e.g. !is.na(var) will return TRUE if the obs of var is NOT missing and FALSE if it's missing).

table(var): Tabulates the different values of a variable

Let's go to R

Plotting your data is a very intuitive way to see
what's going on.

It's also useful to convey complex analysis!

Make sure your plots are always informative and
they tell the story you want to highlight.

Plotting in R

General structure of ggplot

ggplot() works in "layers":

You can provide different geometries and "add" them to your plot (same with themes!)

You always start with ggplot(data = d, aes(x = var1, y = var2, color = var3)),
depending on what you want to do:

aes() stands for aesthetics, and it tells which variables you want to use and how. Sometimes you
need one variable (e.g. histogram), sometimes you need two (e.g. scatter plot), or even three or more!
(e.g. scatter plot for different groups)

You can provide aes() in the ggplot() function (as seen above), or also in each geometric layer:
e.g. ggplot(data = d) + geom_point(aes(x = var1, y = var2))

General structure of ggplot

Some common geometries that are useful:

geom_point(): Creates a scatter plot
geom_line(): Creates a line plot
geom_histogram() or geom_density(): Creates a histogram or a density plot for your data!
geom_smooth(): Creates a smooth function that goes through your data. By default, it uses a loess
or gam function, depending on the size of the data. Use method = "lm"as an argument if you want
to fit a regression line!

Finally, looks are also important!

theme() allows you to play around with every aspect of your plot (e.g. font size, grid lines, etc.)
Using a pre-packages theme can be useful, too. I personally like theme_minimal() or the
theme_ipsum_rc() from the hrbrthemes package.

Let's go to R

Regressions help us quantify the relationship
between different variables.

In R, we can get many important insights from
regression analysis!

Regression Analysis

Regressions in R

The main command to do regressions is lm(y ~ x1 + x2, data = d), where y is our outcome of
interest and x1 and x2 are regressors.

For convenience, we can store the regression in a separate object (e.g. lm1 = lm(y ~ x1 + x2,
data = d)), so we can later manipulate it:

summary(lm1): Provides a summary table of the results (including estimates, standard errors, and p-
values).
lm1$coefficients: Recovers the exact estimated coefficients (e.g. useful if you want to use them
later).
summary(lm1)$coefficients: Matrix of results. Includes columns for the estimates betas,
standard errors, t-stats, and p-values.

Let's go to R

R is useful and fun!

