### STA 235H - Natural Experiments & Difference-In-Differences Fall 2023

McCombs School of Business, UT Austin

#### Announcements

- Grades for Homework 2 will be posted this week.
  - Review the Answer Key on the course website (posted Mon/Tue after submission).
  - Everyone did pretty well, but remember that answers need to match submitted code.
- Midterm is in class (week of Oct. 16th):
  - Practice quizz (not graded, but mandatory) for proctored exams (HonorLock).
  - There will be a review session Thur/Fri before the midterm (poll).

#### Last week



- Finished with **randomized controlled trials**.
  - Limitations in generalizability and interference (e.g. spillovers).
- Introduced observational studies:
  - Controlling for observable confounders (e.g. regression and matching)



- Talk about other **Observational Studies**:
  - Natural Experiments
  - Difference-in-Differences
- First half: Material
- Second half: You will tackle an exercise.



# Recap so far

#### What did we see last week?

- Limitations in RCTs:
  - Generalizability
  - Breaking SUTVA: Spillover effects and General Equilibrium Effects.
- Introduced Observational Studies:
  - We need to control by confouders: Conditional Ignorability Assumption.
  - How? E.g. Regression, Matching.

#### Identification strategies (designs) we have seen so far...

#### Randomized Controlled trials (RCTs)

- Treatment assignment is <u>randomized</u>
- Ignorability assumption holds by design: Groups are comparable in obs. and unobs. characteristics.
- Analysis? (i) Check balance and (ii) difference in means.

#### Identification strategies (designs) we have seen so far...

Selection on Observables (Matching, Regressions with covariates):

- Treatment assignment is <u>not randomized</u>
- Conditional independence assumption holds <u>if we can control for all confounders</u> (assumes all confounders are observed)
  - After adjusting for covariates, assignment to treatment is as good as random (Is this a credible assumption?).
- Analysis? (i) Compare balance before matching, (ii) compare balance after matching, and (iii) difference in means for the matched sample.

## Is there randomness out there?

## Finding "RCTs" in the wild

• Given that we can't run RCTs for everything, the next best thing is finding a source of random variation that, for all practical purposes, would work as an RCT



You, as a researcher, did not assign units to treatment levels

- 1. Random: Assignment to an intervention is random (e.g. lottery)
- 2. As if random: Assignment to an intervention is not random, but it's not correlated with potential outcomes.



#### Examples of natural experiments

- Oregon Health experiment: Lotteries for Medicaid expansion.
- Vietnam Draft: Impact of military service/education (GI Bill) on earnings.
- Lottery winners: Impact of unearned income on labor earnings.

We can analyze these cases just like an RCT

What do we do if we have something like a natural experiment but <u>both our groups are not necessarily balanced</u>?

# Two wrongs make a right

#### Raising the minimum wage

#### What happens if we raise the minimum wage

#### Economic theory says there should be fewer jobs

New Jersey in 1992

$$4.25 \rightarrow 5.05$$

#### The setup



#### **Before vs After**

Avg. # of jobs per fast food restaurant in NJ



Is this a causal effect?

#### **Treatment vs Control**

Avg. # of jobs per fast food restaurant



#### Problems

## **Before vs After**

Only looking at the treatment group

#### Treatment vs Control

Only looking at post-treatment values

Impossible to separate changes because of treatment or time

Impossible to separate changes because of treatment or differences in growth/other confounders



#### **Difference-in-Differences**

The idea of a DD analysis is to take the within-unit growth...

|           | Pre mean               | Post mean                   | $\Delta$ (post – pre) |
|-----------|------------------------|-----------------------------|-----------------------|
| Control   | A<br>(never treated)   | <b>B</b><br>(never treated) | B – A                 |
| Treatment | C<br>(not yet treated) | D<br>(treated)              | D – C                 |

#### $\Delta$ (post – pre) = within-unit growth

#### **Difference-in-Differences**

... and the across-group growth...

|                                | Pre mean               | Post mean                   | $\Delta$ (post – pre) |
|--------------------------------|------------------------|-----------------------------|-----------------------|
| Control                        | A<br>(never treated)   | <b>B</b><br>(never treated) |                       |
| Treatment                      | C<br>(not yet treated) | D<br>(treated)              |                       |
| $\Delta$ (treatment – control) | C – A                  | D – B                       |                       |

#### $\Delta$ (treatment – control) = across-group growth

#### **Difference-in-Differences**

#### ... and combine them!

|                                | Pre mean               | Post mean                   | $\Delta$ (post – pre)                            |  |
|--------------------------------|------------------------|-----------------------------|--------------------------------------------------|--|
| Control                        | A<br>(never treated)   | <b>B</b><br>(never treated) | B – A                                            |  |
| Treatment                      | C<br>(not yet treated) | D<br>(treated)              | D – C                                            |  |
| $\Delta$ (treatment – control) | C – A                  | D – B                       | (D – C) – (B – A) <i>or</i><br>(D – B) – (C – A) |  |

 $\Delta$ within units  $-\Delta_{across}$  groups = Difference-in-differences = causal effect!

#### Coming back to New Jersey

|              | Pre mean     | Post mean    | $\Delta$ (post – pre) |
|--------------|--------------|--------------|-----------------------|
| Pennsylvania | <b>23.33</b> | <b>21.17</b> | <b>-2.16</b>          |
|              | A            | B            | B – A                 |
| New Jersey   | <b>20.44</b> | <b>21.03</b> | <b>0.59</b>           |
|              | C            | D            | D – C                 |
| ∆            | <b>-2.89</b> | <b>-0.14</b> | (0.59) - (-2.16) =    |
| (NJ – PA)    | C – A        | D – B        | 2.76                  |

#### How does it look in a plot?



#### ... And the real plot!



#### **Difference-in-Differences in practice**

• There's no need to manually estimate all group means..

We can use regressions!

• If the two dimensions for our DD are *time* and *treatment*.

 $Y_i = eta_0 + eta_1 Treat_i + eta_2 Post_i + eta_3 Treat_i imes Post_i + arepsilon_i$ 

where Treat = 1 for the treatment group, and Post = 1 for the after period.

Can you identify the different coefficients?

#### **Difference-in-Differences in practice**

• There's no need to manually estimate all group means..

We can use regressions!

• If the two dimensions for our DD are *time* and *treatment*.

 $Y_i = eta_0 + eta_1 Treat_i + eta_2 Post_i + eta_3 Treat_i imes Post_i + arepsilon_i$ 

where Treat = 1 for the treatment group, and Post = 1 for the after period.

 $\beta_3$  is the causal effect!

#### Let's see it with data

minwage <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/C</pre>

```
minwage <- minwage %>% mutate(treat = ifelse(location=="PA", 0, 1), # treat group: the treated state
post = ifelse(date=="nov1992", 1, 0)) # post: time after treatment wa.
```

head(minwage)

| ## |   | chain      | location | wage | full | part | date    | treat | post |  |
|----|---|------------|----------|------|------|------|---------|-------|------|--|
| ## | 1 | wendys     | PA       | 5.00 | 20   | 20   | feb1992 | 0     | Θ    |  |
| ## | 2 | wendys     | PA       | 5.50 | 6    | 26   | feb1992 | 0     | Θ    |  |
| ## | 3 | burgerking | PA       | 5.00 | 50   | 35   | feb1992 | 0     | Θ    |  |
| ## | 4 | burgerking | PA       | 5.00 | 10   | 17   | feb1992 | 0     | Θ    |  |
| ## | 5 | kfc        | PA       | 5.25 | 2    | 8    | feb1992 | 0     | Θ    |  |
| ## | 6 | kfc        | PA       | 5.00 | 2    | 10   | feb1992 | 0     | 0    |  |

#### Let's see it with data

summary(lm(full ~ treat\*post, data = minwage))

```
##
## Call:
## lm(formula = full ~ treat * post, data = minwage)
##
## Residuals:
      Min
##
              1Q Median
                              3Q
                                    Max
## -10.664 -5.971 -2.405 3.653 52.029
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.664
                           1.007 10.589
                                        <2e-16 ***
## treat
              -2.693 1.117 -2.411 0.0162 *
## post
        -2.493 1.424 -1.750
                                        0.0805 .
## treat:post 2.927
                           1.580
                                 1.853
                                          0.0643 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.243 on 712 degrees of freedom
## Multiple R-squared: 0.008207, Adjusted R-squared: 0.004028
## F-statistic: 1.964 on 3 and 712 DF, p-value: 0.118
```

• Can you interpret the treatment effect?

"Increasing the minimum wage from \$4.25 to \$5.05 had an average effect in New Jersey of 2.9 additional jobs per fast food restaurant"

#### Important things to note

- In Difference-in-Differences, groups do not need to be balanced
  - If differences are stable over time, they get cancelled out when doing the Diff-in-Diff.
- Difference-in-Differences provides an estimate for an average treatment effect for the treated group
  - The estimated effect is not generalizable for the entire sample, *only for the treated group*.

# Diff-in-Diff Assumptions





#### In the absence of the intervention, treatment and control group would have changed in the same way

#### If parallel trends assumption hold...



#### If parallel trends assumption doesn't hold...



#### ... the DD estimate will be biased



#### **Robustness Check**

#### **Pre-Parallel Trends**

# Check by pretending the treatment happened earlier; if there's an effect, there's likely an underlying trend

#### Use the pre-intervention period and conduct a placebo DD



# Your turn

## Wrapping up

- We introduced a new study design!
- If we think the **parallel trend assumption holds**, we can find an Average Treatment Effect for the treated group (ATT)
  - Remember that we can't say anything about the treatment effect for the control group!
- Next week we will see more identification strategies.



#### References

- Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 2.
- Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 5.
- Heiss, A. (2020). "Program Evaluation for Public Policy". Class 8-9: Diff-in-diff I and II, Course at BYU.