STA 235H - Multiple Regression: Polynomials

Fall 2023

McCombs School of Business, UT Austin

Some Announcements

- Homework answer key will be posted on Tuesday/Wednesday.
- Make sure you check it out!
- Exercises: Multiple regression (e.g. Bechdel Test example), differences in associations between groups (e.g. luxury vs non-luxury cars depreciation).
- Check personalized feedback for JITT 3, if included.
- Additional videos on material (and some R code) in Resources > Videos

Side note: Difference between percent change and change in percentage points

- Imagine that if you study 4hrs your probability of getting an A is, on average, 70% and if you study for 5 hrs that probability increases to 75%.
- Then, we can say that your probability increased by 5 percentage points.
- Why is this not the same as saying that your probability increased by 5% ?
- Remember percent change?

$$
\frac{y_{1}-y_{0}}{y_{0}}=\frac{75-70}{70}=0.0714
$$

- This means that, in this case, a 5 percentage point increase is equivalent to a 7% increase in probability

[^0]
Today

- Roadmap of where we've been and where we're going.
- Nonlinear models:
- Polynomial terms
- Introduction to Causal Inference
- Potential Outcomes Framework

Roadmap so far

- Started the class with a review on simple linear regressions:
- Association between a variable X and outcome Y
- e.g. Revenue $=\beta_{0}+\beta_{1}$ Bechdel $+\varepsilon$
- Followed by multiple regression:
- Partial association between X and Y, when holding other variables constant.
- e.g. Revenue $=\beta_{0}+\beta_{1}$ Bechdel $+\beta_{2}$ Revenue $+\beta_{3} I M D B+\varepsilon$
- What if we want to compare differences in associations between groups?:
- Compare the association between X and Y for group $D=1$ and $D=0$.
- e.g. Price $=\beta_{0}+\beta_{1}$ Year $+\beta_{2}$ Luxury $+\beta_{3}$ Year \times Luxury $+\varepsilon$

Roadmap so far

- What if our outcome Y is weird (e.g. not normally distributed)?
- If Y is skewed to the right (log-normal): Transform to $\log (Y)$ to improve linearity assumption!
- e.g. $\log ($ Price $)=\beta_{0}+\beta_{1}$ Year $+\beta_{2}$ Luxury $+\beta_{3}$ Mileage $+\varepsilon$
- Interpret coefficients as percent change (\%)
- What if our outcome Y is weird (e.g. binary)?
- e.g. Employed $=\beta_{0}+\beta_{1}$ Age $+\beta_{2}$ Afam $+\beta_{3}$ NKids $+\varepsilon$
- Interpret coefficients as change in probability (e.g. percentage points)
- What if there isn't a linear relation between X and Y ?
- Include polynomial terms for X
- What if I want to know what is the effect of X on Y ?
- Causal Inference!

Adding polynomial terms

- Another way to capture nonlinear associations between the outcome (Y) and covariates (X) is to include polynomial terms:
- e.g. $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon$
- Let's look at an example!

Determinants of wages: CPS 1985

Determinants of wages: CPS 1985

Experience vs wages: CPS 1985

Experience vs wages: CPS 1985

$$
\log (\text { Wage })=\beta_{0}+\beta_{1} E d u c+\beta_{2} E x p+\varepsilon
$$

Experience vs wages: CPS 1985

$$
\log (\text { Wage })=\beta_{0}+\beta_{1} E d u c+\beta_{2} E x p+\beta_{3} E x p^{2}+\varepsilon
$$

Mincer equation

$$
\log (\text { Wage })=\beta_{0}+\beta_{1} E d u c+\beta_{2} E x p+\beta_{3} E x p^{2}+\varepsilon
$$

- Interpret the coefficient for education

$$
\log (\text { Wage })=0.52+0.09 \cdot E d u c+0.034 \cdot E x p-0.0005 \cdot \text { Exp }^{2}
$$

- What is the association between experience and wages?

Interpreting coefficients in quadratic equation

Interpreting coefficients in quadratic equation

Interpreting coefficients in quadratic equation

Interpreting coefficients in quadratic equation

$$
\log (\text { Wage })=\beta_{0}+\beta_{1} E d u c+\beta_{2} E x p+\beta_{3} E x p^{2}+\varepsilon
$$

What is the association between experience and wages?

- Pick a value for $E x p_{0}$ (e.g. mean, median, one value of interest)

Increasing work experience from $E x p_{0}$ to $E x p_{0}+1$ years is associated, on average, to a $\left(\hat{\beta}_{2}+2 \hat{\beta}_{3} \times E x p_{0}\right) 100 \%$ increase on hourly wages, holding education constant

Let's put some numbers into it:

$$
\log (\text { Wage })=0.52+0.09 \cdot E d u c+0.034 \cdot E x p-0.0005 \cdot E x p^{2}
$$

Increasing work experience from 20 to 21 years is associated, on average, to a $(0.034-2 \times 0.0005 \times 20) \times 100=1.4 \%$ increase on hourly wages, holding education constant

Let's go to R

References

- Ismay, C. \& A. Kim. (2021). "Statistical Inference via Data Science". Chapter 6 \& 10.

[^0]: Be aware of the difference in percentage points and percent!

