STA 235H - Prediction: Bagging, Random Forests, and Boosting Fall 2023

McCombs School of Business, UT Austin

Announcements

- Homework 5 is due this Friday (remember to get an early start!)
- Next class: No new content, only a review! (Final TRIVIA)
- One final JITT: Only a Knowledge Check (due Sunday before class for Monday section).
 - Make sure you do it this week, so you don't have to work during the break.

What we have seen...

- Decision trees:
 - Classification and Regression Trees
 - When to split? Complexity parameter
 - Advantages and disadvantages.

What we'll cover today

- Ensemble methods:
 - Bagging (e.g. tree bagging)
 - \circ Random Forests
 - Boosting

Quick recap on trees

Quick refresher on decision trees

- A decision tree is a structure that works like a flowchart
- You start at the **root node**, make your way down the branches through the (internal) nodes, and get to the leaves (terminal nodes).
 - At the leaves is where prediction happens!

To split or not to split

- In general, we will only increase the size of our tree (additional split) if we gain some additional information for prediction
- How do we measure that information gain?
 - Classification: Impurity measure (like Gini Index).
 - Regression: Decrease in RMSE.

Let's look at an example: Car seat prices

Data for ISLR

Carseats = read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Classes/Week13/1_RandomF

►

head(Carseats)

##		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education
##	1	9.50	138	73	11	276	120	Bad	42	17
##	2	11.22	111	48	16	260	83	Good	65	10
##	3	10.06	113	35	10	269	80	Medium	59	12
##	4	7.40	117	100	4	466	97	Medium	55	14
##	5	4.15	141	64	3	340	128	Bad	38	13
##	6	10.81	124	113	13	501	72	Bad	78	16
##		Urban	US							
##	1	Yes	Yes							
##	2	Yes	Yes							
##	3	Yes	Yes							
##	4	Yes	Yes							
##	5	Yes	No							
##	6	No	Yes							

Do you wanna build a... tree?

```
library(caret)
library(rpart)
library(rattle)
library(rsample)
library(modelr)
```

```
set.seed(100)
```

```
split = initial_split(Carseats, prop = 0.7, strata = "Sales")
```

```
carseats.train = training(split)
carseats.test = testing(split)
```

```
tuneGrid = expand.grid(cp = seq(0, 0.015, length = 100))
```

```
mcv = train(Sales ~., data = carseats.train, method = "rpart",
    trControl = trainControl("cv", number = 10), tuneGrid = tuneGrid)
```

Do you wanna build a... tree?

```
library(caret)
library(rpart)
library(rattle)
library(rsample)
library(modelr)
set.seed(100)
split = initial_split(Carseats, prop = 0.7, strata = "Sales")
carseats.train = training(split)
carseats.test = testing(split)
tuneGrid = expand.grid(cp = seq(0, 0.015, length = 100))
mcv = train(Sales ~., data = carseats.train, method = "rpart",
 trControl = trainControl("cv", number = 10), tuneGrid = tuneGrid)
```

Do you wanna build a... tree?

fancyRpartPlot(mcv\$finalModel, caption="Decision Tree for Car Seats Sales")

Q1) We are trying to predict Sales. How many different prediction values for sales will I have, at most, considering the previous decision tree?

Seems a pretty complex tree... can we improve it?

Q2) What is the main objective of bagging?

- Bagging (Bootstrap Aggregation): Meant to reduce variance.
- Remember **bootstrap sampling**?

- Bagging (Bootstrap Aggregation): Meant to reduce variance.
- Remember **bootstrap sampling**?

- Bagging (Bootstrap Aggregation): Meant to reduce variance.
- Remember **bootstrap sampling**?

- Bagging (Bootstrap Aggregation): Meant to reduce variance.
- Remember **bootstrap sampling**?

- Bagging (Bootstrap Aggregation): Meant to reduce variance.
- Remember **bootstrap sampling**?

Bootstrapped Sample

Bagging and Decision Trees

- 1. Bootstrap your training sample B times
- 2. For each sample *b*, build a full-grown tree (no pruning).
- 3. Predict your outcomes!
 - a) Regression: Average the outcomesb) Classification: Majority vote

Source: Singhal (2020)

But... how does this reduce variance?

$${\hat f}_{bag}(x)=rac{1}{B}\sum_{b=1}^B{\hat f}^b(x)$$

• If $Var(\hat{f}^{b}(x)) = \sigma^{2} \ \forall b$, then:

$$Var({\hat f}_{bag}(x))=Var(rac{1}{B}\sum_{b=1}^B{\hat f}^b(x))=rac{B}{B^2}\sigma^2=rac{\sigma^2}{B}$$

How does it compare to the best single decision tree?

Best DT vs Bagging

• RMSE for single decision tree:

rmse(mcv, carseats.test)

[1] 2.025994

• RMSE for bagged trees (100):

rmse(bt, carseats.test)

[1] 1.523912

Best DT vs Bagging

Interpretability?

Importance

We can do better...

Random forests

Bringing trees together

• Random Forests uses both the concepts of decision trees and bagging, but also de-correlates the trees.

Bootstrap: Vary *n* dimension (rows/obs)

De-correlation: Vary *p* dimension (number of predictors)

• For each bagged tree, choose *m* out of *p* regressors.

Basic algorithm

- 1. Given a training data set
- 2. Select number of trees to build (n_trees)
- 3. for i = 1 to n_trees do
- 4. | Generate a bootstrap sample of the original data
- 5. | Grow a regression/classification tree to the bootstrapped data
- 6. | for each split do
- 7. | | Select m_try variables at random from all p variables
- 8. | | Pick the best variable/split-point among the m_try
- 9. | | Split the node into two child nodes
- 10. | end
- 12. end
- 13. Output ensemble of trees

Source: Boehmke & Greenwell (2020)

Back to our example!

```
set.seed(100)
```

```
tuneGrid = expand.grid(
    mtry = 1:11,
    splitrule = "variance",
    min.node.size = 5
)

rfcv = train(Sales ~ ., data = carseats.train,
    method = "ranger",
    trControl = trainControl("cv", nur
    importance = "permutation",
    tuneGrid = tuneGrid)
```

plot(rfcv)

Back to our example! (Runs faster: 30s vs 11s)

Covariance importance?

plot(varImp(rfcv, scale = TRUE))

Q3) In a Random Forest, a higher number of trees will yield an... underfitted model? overfitted model? doesn't affect?

Let's compare our models:

Pruned tree
rmse(mcv, carseats.test)

[1] 2.025994

Bagged trees
rmse(bt, carseats.test)

[1] 1.523912

Random Forest
rmse(rfcv, carseats.test)

[1] 1.476309

Can we do better than this?

Boosting!

What is boosting?

- Similar to bagging, but now trees grow sequentially.
- Slowly learning!
- More effective on models with high bias and low variance

The Process of Boosting

Tuning parameters for boosting

- Number of trees: We need to select the *B* number of trees we will fit. We can get this through cross-validation.
- Shrinkage parameter: λ determines how fast the boosting will learn. Typical numbers range are 0.001 to 0.01. If your algorithm is learning too slow (low λ), you're going to need a lot of trees!
- Number of splits: Number of splits *d* controls the complexity of your trees. We usually work with low-complexity trees (d=1)

Q4) A tree with just a root and two leaves is called a stomp. Are these high or low-bias trees?

Boosting in R

- There are different types of boosting:
 - Gradient boosting (GBM): Improve on residuals of weak learners
 - Adaptive boosting (AdaBosst): Larger weights for wrong classifications.

modelLookup("ada")

##		model	parameter	lab	el	forReg	forClass	probModel
##	1	ada	iter	#Tre	es	FALSE	TRUE	TRUE
##	2	ada	maxdepth	Max Tree Dep	th	FALSE	TRUE	TRUE
##	3	ada	nu	Learning Ra	te	FALSE	TRUE	TRUE

modelLookup("gbm")

##		model	parameter			label	forReg	forClass	probModel
##	1	gbm	n.trees	#	Boosting	Iterations	TRUE	TRUE	TRUE
##	2	gbm	interaction.depth		Max	Tree Depth	TRUE	TRUE	TRUE
##	3	gbm	shrinkage			Shrinkage	TRUE	TRUE	TRUE
##	4	gbm	n.minobsinnode	Min	. Terminal	. Node Size	TRUE	TRUE	TRUE

Gradient Boosting in R

Gradient Boosting in R

Final Model information
gbm\$finalModel

A gradient boosted model with gaussian loss function. ## 400 iterations were performed. ## There were 11 predictors of which 11 had non-zero influence.

Best Tuning parameters?
gbm\$bestTune

n.trees interaction.depth shrinkage n.minobsinnode
8 400 1 0.1 10

Let's do a comparison!

Pruned tree
rmse(mcv, carseats.test)

[1] 2.025994

Bagged trees
rmse(bt, carseats.test)

[1] 1.523912

Random Forest
rmse(rfcv, carseats.test)

[1] 1.476309

Gradient Boosting
rmse(gbm, carseats.test)

[1] 1.212779

Q5) What is the main objective of boosting?

Main takeaway points

- There's a lot we can do to improve our prediction models!
- Decision trees by itself are not great...
 - ... but they are awesome for building other stuff like random forests.
- **Bagging** and **boosting** can be used with other learners, not only DT!

There are a lot of other methods out there and ways to combine them! (e.g. stacking)

References

- Boehmke, B. & B. Greenwell. (2020). "Hands-on Machine Learning with R"
- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 8.
- Singhal, G. (2020). "Ensemble methods in Machine Learning: Bagging vs. Boosting"