
STA 235H - Prediction: Bagging, Random Forests, and Boosting

Fall 2023

McCombs School of Business, UT Austin

Announcements

Homework 5 is due this Friday (remember to get an early start!)

Next class: No new content, only a review! (Final TRIVIA)

One final JITT: Only a Knowledge Check (due Sunday before class for Monday section).

Make sure you do it this week, so you don't have to work during the break.

Decision trees:

Classification and Regression Trees

When to split? Complexity parameter

Advantages and disadvantages.

What we have seen...

Ensemble methods:

Bagging (e.g. tree bagging)

Random Forests

Boosting

What we'll cover today

Quick recap on trees

A decision tree is a structure that works like a
flowchart

You start at the root node, make your way down
the branches through the (internal) nodes, and
get to the leaves (terminal nodes).

At the leaves is where prediction happens!

Quick refresher on decision trees

In general, we will only increase the size of our
tree (additional split) if we gain some additional
information for prediction

How do we measure that information gain?

Classification: Impurity measure (like Gini
Index).
Regression: Decrease in RMSE.

To split or not to split

Let's look at an example: Car seat prices

Data for ISLR
Carseats = read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Classes/Week13/1_RandomF

head(Carseats)

Sales CompPrice Income Advertising Population Price ShelveLoc Age Education
1 9.50 138 73 11 276 120 Bad 42 17
2 11.22 111 48 16 260 83 Good 65 10
3 10.06 113 35 10 269 80 Medium 59 12
4 7.40 117 100 4 466 97 Medium 55 14
5 4.15 141 64 3 340 128 Bad 38 13
6 10.81 124 113 13 501 72 Bad 78 16
Urban US
1 Yes Yes
2 Yes Yes
3 Yes Yes
4 Yes Yes
5 Yes No
6 No Yes

Do you wanna build a... tree?

library(caret)
library(rpart)
library(rattle)
library(rsample)
library(modelr)

set.seed(100)

split = initial_split(Carseats, prop = 0.7, strata = "Sales")

carseats.train = training(split)
carseats.test = testing(split)

tuneGrid = expand.grid(cp = seq(0, 0.015, length = 100))

mcv = train(Sales ~., data = carseats.train, method = "rpart",
 trControl = trainControl("cv", number = 10), tuneGrid = tuneGrid)

Do you wanna build a... tree?

library(caret)
library(rpart)
library(rattle)
library(rsample)
library(modelr)

set.seed(100)

split = initial_split(Carseats, prop = 0.7, strata = "Sales")

carseats.train = training(split)
carseats.test = testing(split)

tuneGrid = expand.grid(cp = seq(0, 0.015, length = 100))

mcv = train(Sales ~., data = carseats.train, method = "rpart",
 trControl = trainControl("cv", number = 10), tuneGrid = tuneGrid)

Do you wanna build a... tree?

fancyRpartPlot(mcv$finalModel, caption="Decision Tree for Car Seats Sales")

Q1) We are trying to predict Sales.
How many di�erent prediction

values for sales will I have, at most,
considering the previous decision

tree?

Seems a pretty complex tree... can
we improve it?

Bagging

Q2) What is the main objective of
bagging?

Introduction to Bagging

Bagging (Bootstrap Aggregation): Meant to reduce variance.

Remember bootstrap sampling?

Introduction to Bagging

Bagging (Bootstrap Aggregation): Meant to reduce variance.

Remember bootstrap sampling?

Introduction to Bagging

Bagging (Bootstrap Aggregation): Meant to reduce variance.

Remember bootstrap sampling?

Introduction to Bagging

Bagging (Bootstrap Aggregation): Meant to reduce variance.

Remember bootstrap sampling?

Introduction to Bagging

Bagging (Bootstrap Aggregation): Meant to reduce variance.

Remember bootstrap sampling?

�. Bootstrap your training sample times

�. For each sample , build a full-grown tree (no
pruning).

�. Predict your outcomes!

a) Regression: Average the outcomes
b) Classification: Majority vote

Bagging and Decision Trees

Source: Singhal (2020)

B

b

But... how does this reduce variance?

If , then:

f̂ bag(x) =
B

∑
b=1

f̂
b
(x)

1

B

V ar(f̂
b
(x)) = σ2 ∀ b

V ar(f̂ bag(x)) = V ar(
B

∑
b=1

f̂
b
(x)) = σ2 =

1

B

B

B2

σ2

B

How do we do this in R?

set.seed(100)

bt = train(Sales ~ ., data = carseats.train,
 method = "treebag",
 trControl = trainControl("cv", number = 10),
 nbagg = 100,
 control = rpart.control(cp = 0))

How do we do this in R?

set.seed(100)

bt = train(Sales ~ ., data = carseats.train,
 method = "treebag",
 trControl = trainControl("cv", number = 10),
 nbagg = 100,
 control = rpart.control(cp = 0))

How do we do this in R?

set.seed(100)

bt = train(Sales ~ ., data = carseats.train,
 method = "treebag",
 trControl = trainControl("cv", number = 10),
 nbagg = 100,
 control = rpart.control(cp = 0))

How do we do this in R?

set.seed(100)

bt = train(Sales ~ ., data = carseats.train,
 method = "treebag",
 trControl = trainControl("cv", number = 10),
 nbagg = 100,
 control = rpart.control(cp = 0))

How does it compare to the best single decision tree?

Let's see!

Best DT vs Bagging

RMSE for single decision tree:

RMSE for bagged trees (100):

rmse(mcv, carseats.test)

[1] 2.025994

rmse(bt, carseats.test)

[1] 1.523912

Best DT vs Bagging

Interpretability?

set.seed(100)

bt = train(Sales ~ ., data = carseats.train, method = "treebag",
 trControl = trainControl("cv", number = 10),
 nbagg = 100, control = rpart.control(cp = 0))

plot(varImp(bt, scale = TRUE))

We can do better...

Random forests

Bringing trees together

Random Forests uses both the concepts of decision trees and bagging, but also de-correlates the trees.

Bootstrap: Vary n dimension (rows/obs)

De-correlation: Vary p dimension (number of predictors)

For each bagged tree, choose m out of p regressors.

Basic algorithm

Source: Boehmke & Greenwell (2020)

1. Given a training data set
2. Select number of trees to build (n_trees)
3. for i = 1 to n_trees do
4. | Generate a bootstrap sample of the original data
5. | Grow a regression/classification tree to the bootstrapped data
6. | for each split do
7. | | Select m_try variables at random from all p variables
8. | | Pick the best variable/split-point among the m_try
9. | | Split the node into two child nodes
10. | end
11. | Use typical tree model stopping criteria to determine when a
 | tree is complete (but do not prune)
12. end
13. Output ensemble of trees

Back to our example!

set.seed(100)

tuneGrid = expand.grid(
 mtry = 1:11,
 splitrule = "variance",
 min.node.size = 5
)

rfcv = train(Sales ~ ., data = carseats.train,
 method = "ranger",
 trControl = trainControl("cv", num
 importance = "permutation",
 tuneGrid = tuneGrid)

plot(rfcv)

Back to our example! (Runs faster: 30s vs 11s)

library(doParallel)
cl = makePSOCKcluster(7)
registerDoParallel(cl)

set.seed(100)

rfcv_fast = train(Sales ~ ., data = carseats.train,
 method = "ranger",
 trControl = trainControl("cv", number = 10,
 allowParallel = TRUE),
 tuneGrid = tuneGrid)

stopCluster(cl)
registerDoSEQ()

Covariance importance?

plot(varImp(rfcv, scale = TRUE))

Q3) In a Random Forest, a higher
number of trees will yield an...

under�tted model? over�tted model?
doesn't a�ect?

Let's compare our models:

Pruned tree
rmse(mcv, carseats.test)

[1] 2.025994

Bagged trees
rmse(bt, carseats.test)

[1] 1.523912

Random Forest
rmse(rfcv, carseats.test)

[1] 1.476309

Can we do better than this?

Boosting!

What is boosting?

Similar to bagging, but now trees grow sequentially.

Slowly learning!

More effective on models with high bias and low variance

Tuning parameters for boosting

Number of trees: We need to select the number of trees we will fit. We can get this through cross-
validation.

Shrinkage parameter: determines how fast the boosting will learn. Typical numbers range are 0.001 to
0.01. If your algorithm is learning too slow (low), you're going to need a lot of trees!

Number of splits: Number of splits controls the complexity of your trees. We usually work with low-
complexity trees (d=1)

B

λ

λ

d

Q4) A tree with just a root and two
leaves is called a stomp. Are these

high or low-bias trees?

Boosting in R

There are different types of boosting:

Gradient boosting (GBM): Improve on residuals of weak learners

Adaptive boosting (AdaBosst): Larger weights for wrong classifications.

modelLookup("ada")

model parameter label forReg forClass probModel
1 ada iter #Trees FALSE TRUE TRUE
2 ada maxdepth Max Tree Depth FALSE TRUE TRUE
3 ada nu Learning Rate FALSE TRUE TRUE

modelLookup("gbm")

model parameter label forReg forClass probModel
1 gbm n.trees # Boosting Iterations TRUE TRUE TRUE
2 gbm interaction.depth Max Tree Depth TRUE TRUE TRUE
3 gbm shrinkage Shrinkage TRUE TRUE TRUE
4 gbm n.minobsinnode Min. Terminal Node Size TRUE TRUE TRUE

Gradient Boosting in R

set.seed(100)

gbm = train(Sales ~ ., data = carseats.train,
 method = "gbm",
 trControl = trainControl("cv", number = 10),
 tuneLength = 20)

Gradient Boosting in R

Final Model information
gbm$finalModel

A gradient boosted model with gaussian loss function.
400 iterations were performed.
There were 11 predictors of which 11 had non-zero influence.

Best Tuning parameters?
gbm$bestTune

n.trees interaction.depth shrinkage n.minobsinnode
8 400 1 0.1 10

Let's do a comparison!

Pruned tree
rmse(mcv, carseats.test)

[1] 2.025994

Bagged trees
rmse(bt, carseats.test)

[1] 1.523912

Random Forest
rmse(rfcv, carseats.test)

[1] 1.476309

Gradient Boosting
rmse(gbm, carseats.test)

[1] 1.212779

Q5) What is the main objective of
boosting?

There's a lot we can do to improve our
prediction models!

Decision trees by itself are not great...

... but they are awesome for building other
stuff like random forests.

Bagging and boosting can be used with other
learners, not only DT!

There are a lot of other methods
out there and ways to combine

them! (e.g. stacking)

Main takeaway points

References

Boehmke, B. & B. Greenwell. (2020). "Hands-on Machine Learning with R"

James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 8.

Singhal, G. (2020). "Ensemble methods in Machine Learning: Bagging vs. Boosting"

https://bradleyboehmke.github.io/HOML/bagging.html
https://www.pluralsight.com/guides/ensemble-methods:-bagging-versus-boosting

