STA 235H - Model Selection II: Shrinkage

Fall 2022

McCombs School of Business, UT Austin

Last class

- Started with our **prediction chapter**
 - Bias vs. Variance
 - Validation set approach and Crossvalidation
 - How to choose a model for a continuous outcome (RMSE)
 - Stepwise selection

Knowledge check from last week

1) Which model is higher bias: A complex model or a simpler one?

2) Why do we **split our data** into training and testing datasets?

3) How do we compare models with continuous outcomes?

How forward stepwise selection works: Example from last class

1) Start with a null model (no covariates)

• Your best guess will be the average of the outcome in the training dataset!

2) Test out all models with **one covariate**, and **select the best one**:

- E.g. logins \sim female, logins \sim succession, logins \sim age, ...
- $logins \sim succession$ is the best one (according to RMSE)

3) Test out all models with two covariates, but that have *succession*!

 $\bullet ~ {\sf E.g.}~ logins \sim succession + female, logins \sim succession + age, logins \sim succession + city, \ldots$

4) You will end up with k possible models (k: total number of predictors).

• Choose the best one, depending on the RMSE.

Today: Continuing our journey

- How to improve our linear regressions:
 - Ridge regression
 - $\circ~$ Lasso regression
- Look at binary outcomes

Honey, I shrunk the coefficients!

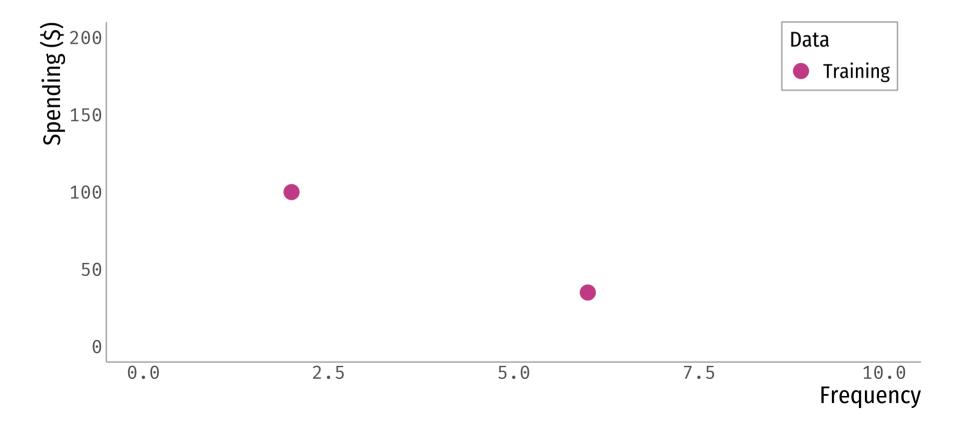
What is shrinkage?

- We reviewed the **stepwise procedure**: Subsetting model selection approach.
 - \circ Select k out of p total predictors
- Shrinkage (a.k.a Regularization): Fitting a model with all p predictors, but introducing bias (i.e. shrinking coefficients towards 0) for improvement in variance.
 - Ridge regression
 - $\circ~$ Lasso regression

On top of a ridge.

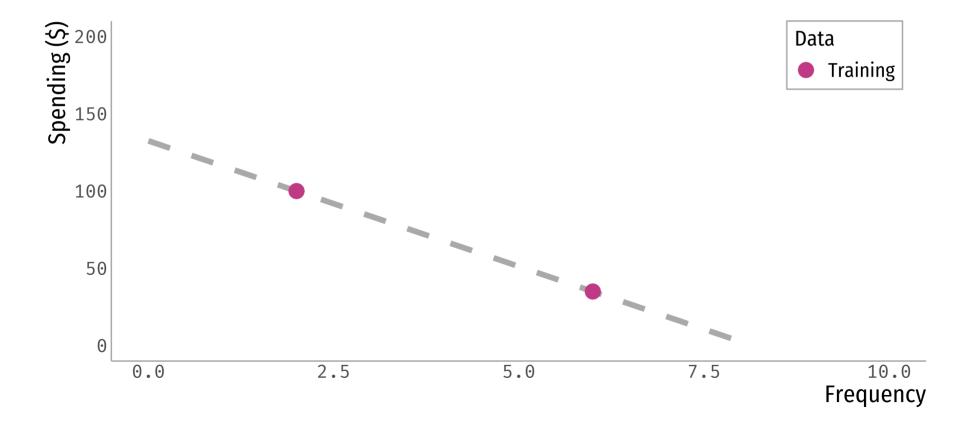
Ridge Regression: An example

• Predict spending based on frequency of visits to a website



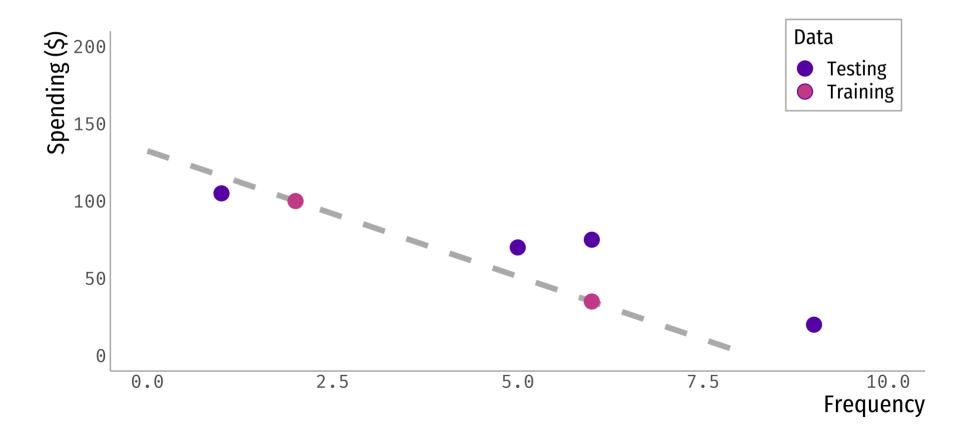
Ordinary Least Squares

• In an OLS: Minimize sum of squared-errors, i.e. $\min_{\beta} \sum_{i=1}^{n} (\text{spend}_{i} - (\beta_{0} + \beta_{1} \text{freq}_{i}))^{2}$



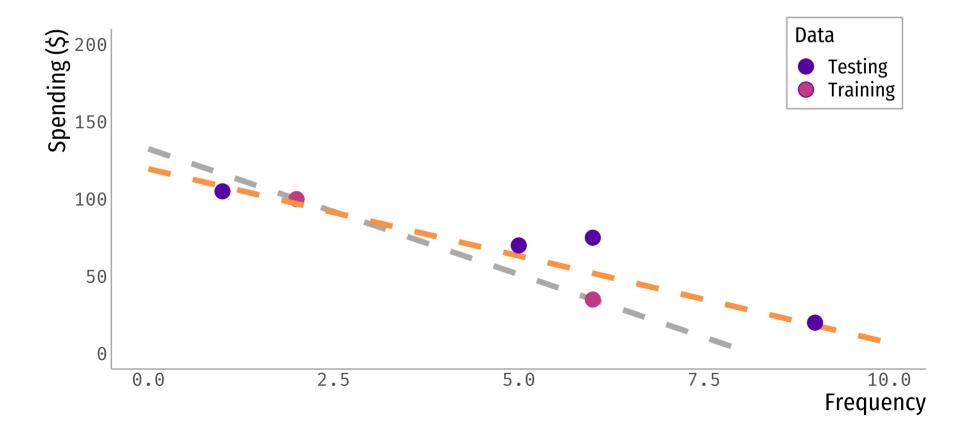
What about fit?

• Does the OLS fit the testing data well?



Ridge Regression

• Let's shrink the coefficients!: Ridge Regression



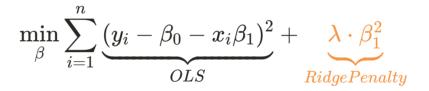
Ridge Regression: What does it do?

- Ridge regression introduces bias to reduce variance in the testing data set.
- In a simple regression (i.e. one regressor/covariate):

$$\min_eta \sum_{i=1}^n \underbrace{(y_i - eta_0 - x_ieta_1)^2}_{OLS}$$

Ridge Regression: What does it do?

- Ridge regression introduces bias to reduce variance in the testing data set.
- In a simple regression (i.e. one regressor/covariate):



• λ is the penalty factor \rightarrow indicates how much we want to shrink the coefficients.

Q1: In general, which model will have smaller β coefficients?

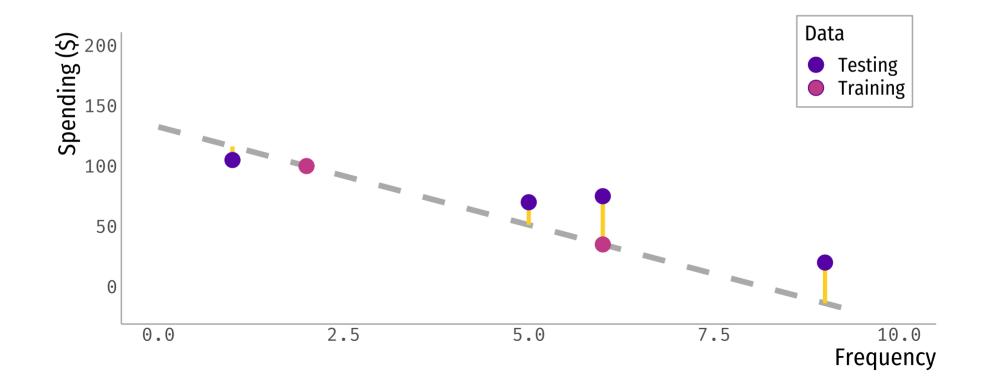
a) A model with a larger λ

b) A model with a smaller λ

Remember... we care about accuracy in the testing dataset!

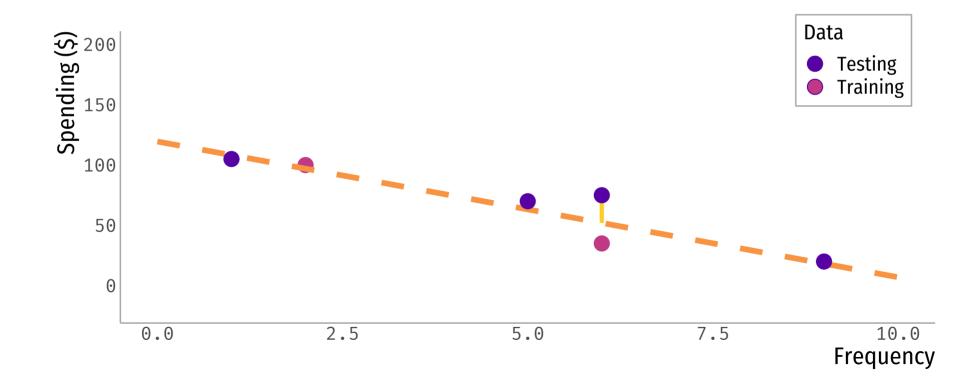
RMSE on the testing dataset: OLS

$$RMSE = \sqrt{rac{1}{4}\sum_{i=1}^4 (ext{spend}_i - (132.5 - 16.25 \cdot ext{freq}_i))^2} = 28.36$$



RMSE on the testing dataset: Ridge Regression

$$RMSE = \sqrt{rac{1}{4}\sum_{i=1}^{4}(ext{spend}_i - (119.5 - 11.25 \cdot ext{freq}_i))^2} = 12.13$$



Ridge Regression in general

• For regressions that include **more than one regressor**:

$$\min_eta \sum_{i=1}^n (y_i - \sum_{k=0}^p x_i eta_k)^2 + \underbrace{\lambda \cdot \sum_{k=1}^p eta_k^2}_{OLS} + \underbrace{\lambda \cdot \sum_{k=1}^p eta_k^2}_{RidgePenalty}$$

• In our previous example, if we had two regressors, *female* and *freq*:

$$\min_eta \sum_{i=1}^n (ext{spend}_i - eta_0 - eta_1 ext{female}_i - eta_2 ext{freq}_i)^2 + \lambda \cdot (eta_1^2 + eta_2^2)$$

- Because the ridge penalty includes the β 's coefficients, scale matters:
 - Standardize variables (you will do that as an option in your code)

How do we choose λ ?

Cross-validation!

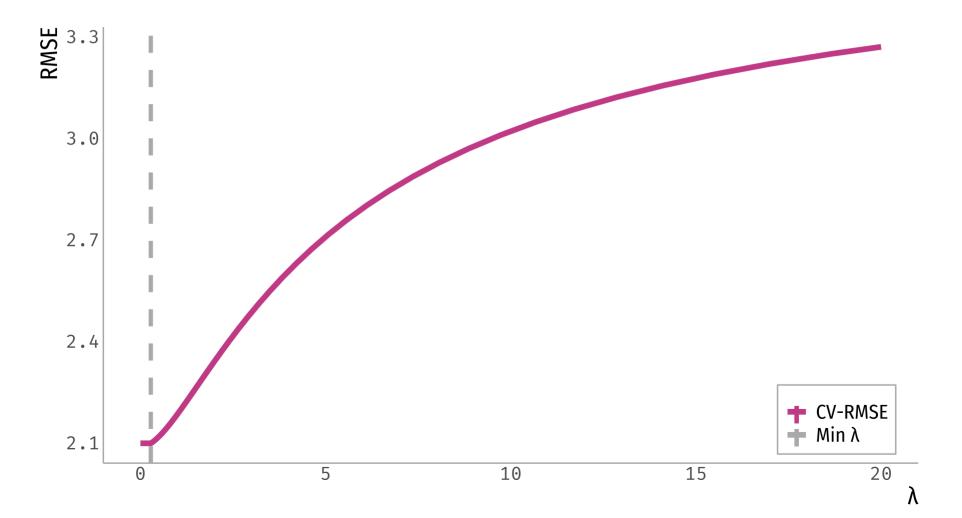
1) Choose a grid of λ values

• The grid you choose will be context dependent (play around with it!)

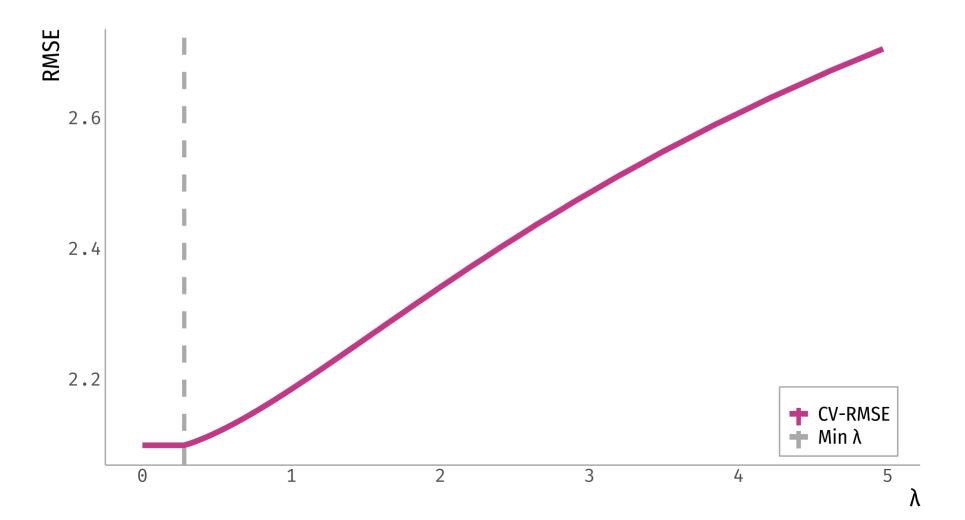
2) Compute cross-validation error (e.g. RMSE) for each

3) Choose the smallest one.

λ vs RMSE?



λ vs RMSE? A zoom



library(caret)

```
set.seed(100)
hbo = read.csv("https://raw.githubusercontent.
lambda_seq = seq(0, 20, length = 500)
ridge = train(logins ~ . - unsubscribe - id,
            data = train.data,
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", num
            tuneGrid = expand.grid(alpha = 0,
                         lambda = lambda seq)
plot(ridge)
```

• We will be using the caret package

library(caret)

set.seed(100)

```
hbo = read.csv("https://raw.githubusercontent.
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!

library(caret)

set.seed(100)

```
hbo = read.csv("https://raw.githubusercontent.
```

lambda_seq = seq(0, 20, length = 500)

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the λ 's that will be tested

```
library(caret)
```

```
set.seed(100)
```

```
hbo = read.csv("https://raw.githubusercontent.
```

```
lambda_seq = seq(0, 20, length = 500)
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the λ 's that will be tested
- The function we will use is train: Same as before
 - method="glmnet" means that it will run an elastic net.
 - alpha=0 means is a ridge regression
 - lambda = lambda_seq is not necessary (you can provide your own grid)

```
library(caret)
set.seed(100)
hbo = read.csv("https://raw.githubusercontent.
lambda seq = seq(0, 20, length = 500)
ridge = train(logins ~ . - unsubscribe - id,
            data = train.data.
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", num
            tuneGrid = expand.grid(alpha = 0,
                         lambda = lambda seq)
plot(ridge)
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the λ 's that will be tested
- The function we will use is train: Same as before
- Important objects in cv:
 - $\circ~{\tt results}{\tt lambda}:{\tt Vector}~{\tt of}~\lambda$ that was tested
 - $\circ~{\rm results}{\rm \$RMSE}{\rm :}~{\rm \tt RMSE}{\rm for each}~\lambda$
 - $\circ~$ bestTune\$lambda: λ that minimizes the error term.

OLS regression:

coef(lm1)

```
## (Intercept) succession city
## 7.035888 -6.306371 2.570454
```

rmse(lm1, test.data)

[1] 2.089868

Ridge regression:

coef(ridge\$finalModel, ridge\$bestTune\$lambda)

##	5 x 1 sparse	Matrix of class "dgCMatrix"
##		s1
##	(Intercept)	6.564243424
##	female	0.002726465
##	city	0.824387472
##	age	0.046468790
##	succession ·	-2.639308962

rmse(ridge, test.data)

[1] 2.097452

Throwing a lasso

Lasso regression

• Very similar to ridge regression, except it changes the penalty term:

$$\min_eta \sum_{i=1}^n \underbrace{(y_i - \sum_{k=0}^p x_i eta_k)^2}_{OLS} + rac{\lambda \cdot \sum_{k=1}^p |eta_k|}{\sum_{LassoPenalty}}$$

• In our previous example:

$$\min_eta \sum_{i=1}^n (ext{spend}_i - eta_0 - eta_1 ext{female}_i - eta_2 ext{freq}_i)^2 + \lambda \cdot (|eta_1| + |eta_2|)$$

• Lasso regression is also called l_1 regularization:

$$\left|\left|\beta\right|\right|_1 = \sum_{k=1}^p \left|\beta\right|$$

Q2: Which of the following are TRUE?

a) A ridge regression will have p coeff (if we have p predictors)

b) A lasso regression will have p coeff (if we have p predictors)

c) The largest he α the largest he 1 and 2 norm

Ridge

Final model will have p coefficients

Usually better with multicollinearity

Can set coefficients = 0

Improves interpretability of model

Can be used for model selection

And how do we do Lasso in R?

```
library(caret)
```

set.seed(100)

```
hbo = read.csv("https://raw.githubusercontent.
```

Exactly the same!

• ... But change alpha=1!!

And how do we do Lasso in R?

Ridge regression:

coef(ridge\$finalModel, ridge\$bestTune\$lambda)

```
## 5 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 6.564243424
## female 0.002726465
## city 0.824387472
## age 0.046468790
## succession -2.639308962
```

rmse(ridge, test.data)

[1] 2.097452

Lasso regression:

coef(lasso\$finalModel, lasso\$bestTune\$lambda)

##	5 x 1 sparse	Matrix of class "dgCMatrix"
##		s1
##	(Intercept)	6.84122778
##	female	
##	city	0.87982819
##	age	0.03099797
##	succession -	-2.83492585

rmse(lasso, test.data)

[1] 2.09171

A note on binary outcomes

- If we are predicting **binary outcomes**, RMSE would not be an appropriate measure anymore!
 - We will use **accuracy instead**: The proportion (%) of correctly classified observations.
- For example:

[1] 0.736

A note on binary outcomes

- If we are predicting **binary outcomes**, RMSE would not be an appropriate measure anymore!
 - We will use **accuracy instead**: The proportion (%) of correctly classified observations.
- For example:

```
mean(pred.values == test.data$unsubscribe)
```

[1] 0.736

A note on binary outcomes

- If we are predicting **binary outcomes**, RMSE would not be an appropriate measure anymore!
 - We will use **accuracy instead**: The proportion (%) of correctly classified observations.
- For example:

[1] 0.736

Main takeway points

- You can **shrink coefficients** to introduce bias and decrease variance.
- Ridge and Lasso regression are **similar**:
 - Lasso can be used for model selection.
- Importance of understanding how to estimate the penalty coefficient.

References

- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 6.
- STDHA. (2018). "Penalized Regression Essentials: Ridge, Lasso & Elastic Net"