STA 235H - Model Selection I: Bias vs Variance, Cross-Validation, and Stepwise

Fall 2023

McCombs School of Business, UT Austin

Announcements

- Re-grading for homework 3 available until this Thursday.
 - Please <u>check the rubric</u> and based on that ask for a specific re-grade.
- Think of **assignment drop** as an insurance policy.
 - Start assignments with enough time *if you already think you used your drop*.
- Grades for the midterm will be posted on Tuesday.
 - Importance of completing assignments (e.g. practice quiz, JITTs).
 - Final exam will have limited notes.
- Start of a completely new chapter

• If you struggled with causal inference, doesn't mean that you can't do very well in this second part.

Last class

- Finished with causal inference, discussing regression discontinuity designs
 - We will review the JITT (slides will be posted tomorrow)
 - Importance of doing the coding exercises

JITT 9: Regression discontinuity design

- RDD allows us to compare people <u>exactly at the cutoff</u> if they were treated vs not treated, and estimate a Local Average Treatment Effect (LATE) for those units.
- In the example for the JITT, the treatment is **being legally able to drink** (and the control is *not* being legally able to drink).
- The code you had to run is: summary(rdrobust(mlda\$all, mlda\$r, c = 0))
 - In this case, remember that all is our outcome (total number of arrests), r is our *centered* running variable (age minus the cutoff), and c = 0 is our cutoff (remember that r is centered around 0, so the cutoff is 0 and not 7670).
 - You have to look at the coefficient in the table (Conventional)... and remember to also look at the p-value!
- "On average, for individuals with exactly 21 years of age, being legally able to drink increases the total number of arrests by 409.1, compared to not being legally able to drink"

Introduction to prediction

- So far, we had been focusing on **causal** inference:
 - Estimating an effect and "predicting" a counterfactual (what if?)
- Now, we will focus on **prediction**:
 - Estimate/predict outcomes under specific conditions.

Differences between inference and prediction

- Inference \rightarrow focus on covariate
 - Interpretability of model.
- Prediction \rightarrow focus on **outcome variable**
 - Accuracy of model.

Both can be complementary!

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

LAT Entertainment 🤣 @latimesent

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

...

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

LAT Entertainment 🤣 @latimesent

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

...

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. \mathscr{O} latimes.com

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

LAT Entertainment 🤣 @latimesent

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

...

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. \mathscr{O} latimes.com

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

Identify customer that are likely to cancel/quit/fail to renew

LAT Entertainment 🤣 @latimesent

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

...

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. \mathscr{O} latimes.com

Bias vs Variance

"There are no free lunches in statistics"

- Not one method dominates others: Context/dataset dependent.
- Remember that the goal of prediction is to have a method that is accurate in predicting outcomes on **previously unseen data**.
 - Validation set approach: Training and testing data

Balance between flexibility and accuracy

"[T]he amount by which the function *f* would change if we estimated it using a different training dataset"

"[E]rror introduced by approximating a real-life problem with a model"

Q1:Which models do you think are higher variance?

a) More flexible models

b) Less flexible models

Bias vs. Variance: The ultimate battle

- In inference, **bias >> variance**
- In prediction, we care about **both**:
 - Measures of accuracy will have both bias and variance.

How do we measure accuracy?

Different measures (for continuous outcomes):

- Remember $Adj R^2$?
 - $\circ R^2$ (proportion of the variation in Y explained by Xs) adjusted by the number of predictors!
- Mean Squared Error (MSE): Can be decomposed into variance and bias terms

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

• Root Mean Squared Error (RMSE): Measured in the same units as the outcome!

$$RMSE = \sqrt{MSE}$$

• Other measures: Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)

RMSE for training and testing dataset

RMSE for training and testing dataset

Example: Let's predict "pre-churn"!

• You work at HBO Max and you know that a good measure for someone at risk of unsubscribing is the times they've logged in the past week:

hbo = read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Classes
head(hbo)

##		id	female	city	age	logins	succession	unsubscribe
##	1	1	1	1	53	10	Θ	1
##	2	2	1	1	48	7	1	Θ
##	3	3	Θ	1	45	7	1	Θ
##	4	4	1	1	51	5	1	Θ
##	5	5	1	1	45	10	Θ	Θ
##	6	6	1	0	40	Θ	1	Θ

Two candidates: Simple vs Complex

• Simple Model:

 $logins = eta_0 + eta_1 imes Succession + eta_2 imes city + arepsilon$

• Complex Model:

 $logins = eta_0 + eta_1 imes Succession + eta_2 imes age + eta_3 imes age^2 + \ eta_4 imes city + eta_5 imes female + arepsilon$

Create Validation Sets

set.seed(100) #Always set seed for replication!

n = nrow(hbo)

train = sample(1:n, n*0.8) #randomly select 80% of the rows for our training sample

train.data = hbo %>% slice(train)
test.data = hbo %>% slice(-train)

Create Validation Sets

set.seed(100) #Always set seed for replication!

n = nrow(hbo)

train = sample(1:n, n*0.8)

```
train.data = hbo %>% slice(train)
test.data = hbo %>% slice(-train)
```

Create Validation Sets

set.seed(100) #Always set seed for replication!

n = nrow(hbo)

train = sample(1:n, n*0.8) #randomly select 80% of the rows for our training sample

train.data = hbo %>% slice(train)
test.data = hbo %>% slice(-train)

Estimate Accuracy Measure

```
library(modelr)
lm_simple = lm(logins ~ succession + city, data = train.data)
lm_complex = lm(logins ~ female + city + age + I(age^2) + succession, data = train.data)
# For simple model:
rmse(lm_simple, test.data) %>% round(., 4)
```

[1] 2.0899

```
# For complex model:
rmse(lm_complex, test.data) %>% round(., 4)
```

[1] 2.0934

• Q2: Which one would you prefer?

Cross-Validation

• To avoid using only one training and testing dataset, we can iterate over *k-fold* division of our data:

Cross-Validation

Procedure for *k-fold* cross-validation:

1. Divide your data in *k-folds* (usually, K = 5 or K = 10).

2. Use k = 1 as the testing data and k = 2, ..., K as the training data.

3. Calculate the accuracy measure A_k on the testing data.

4. Repeat for each k.

5. Average A_k for all $k \in K$.

Main advantage: Use the entire dataset for training AND testing.

library(caret)

set.seed(100)

lm_simple

library(caret)

set.seed(100)

lm_simple

library(caret)

set.seed(100)

train.control = trainControl(method = "cv", number = 10)

lm_simple

```
library(caret)
set.seed(100)
train.control = trainControl(method = "cv", number = 10)
lm simple = train(logins ~ succession + city, data = hbo, method="lm",
                  trControl = train.control)
lm simple
## Linear Regression
##
## 5000 samples
##
     2 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 4500, 4501, 4499, 4500, 4500, 4501, ...
## Resampling results:
##
##
    RMSE
              Rsquared MAE
    2.087314 0.6724741 1.639618
##
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

Stepwise selection

- We have seen how to choose between some given models. But what if we want to test all possible models?
- Stepwise selection: Computationally-efficient algorithm to select a model based on the data we have (subset selection).

Algorithm for forward stepwise selection:

- 1. Start with the *null model*, M_0 (no predictors)
- 2. For k = 0, ..., p 1: (a) Consider all p k models that augment M_k with one additional predictor. (b) Choose the *best* among these p - k models and call it M_{k+1} .
- 3. Select the single best model from M_0, \ldots, M_p using CV.

Backwards stepwise follows the same procedure, but starts with the full model.

Will forward stepwise subsetting yield the same results as backwards stepwise selection?

How do we do stepwise selection in R?

RMSE Rsquared MAE RMSESD RsquaredSD MAESD nvmax ## 1 1 2.269469 0.6101788 1.850376 0.04630907 0.01985045 0.04266950 ## 2 2 2.087184 0.6702660 1.639885 0.04260047 0.01784601 0.04623508 ## 3 3 2.087347 0.6702094 1.640405 0.04258030 0.01804773 0.04605074 ## 4 4 2.088230 0.6699245 1.641402 0.04270561 0.01808685 0.04620206 ## 5 5 2.088426 0.6698623 1.641528 0.04276883 0.01810569 0.04624618

• Which one would you choose out of the 5 models? Why?

How do we do stepwise selection in R?

We can see the number of covariates that is optimal to choose: lm.fwd\$bestTune

nvmax ## 2 2

And how does that model looks like: summary(lm.fwd\$finalModel)

Subset selection object ## 5 Variables (and intercept) ## Forced in Forced out ## id FALSE FALSE e FALSE FALSE FALSE ## female FALSE ## city FALSE FALSE ## age ## succession FALSE FALSE ## 1 subsets of each size up to 2 ## Selection Algorithm: forward id female city age succession ## ## 1 (1) " " " " " " " " " " " ## 2 (1)" . . . п<u>т</u>п п

If we want the RMSE
rmse(lm.fwd, test.data)

[1] 2.089868

Takeaway points

- In prediction, everything is going to be about **bias vs variance**.
- Importance of validation sets.
- We now have methods to select models.

Next class

- Continue with prediction and model selection
- Shrinkage/Regularization methods:
 - Ridge regression and Lasso.

References

- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 2, 5, and 6.
- STDHA. (2018). "Stepwise Regression Essentials in R."
- STDHA. (2018). "Cross-Validation Essentials in R."